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STRONG LAWS OF LARGE NUMBERS FOR ARRAYS OF
ORTHOGONAL RANDOM VARIABLES!)

By F. Moricz of Szeged
and

R. L. Taylor of Athens, Georgia

S~ . and Chapel Hill, North Carolina
o FARE ‘,"’~ R : \‘1/ :’-‘—\‘;;/ -~ .
e /

/- i b
§1. " Hilbert Space Valued Random Variables . *%+.. .t .. s
—:4'(9"-:""4"31- N g.ire

Let H be a separable Hilbert space with inner product denoted by

(+,+). By a rowwise orthogonal array we mean a set {X!'lk: k=1,2,...,n3

n=1,2,...} of random variables (in abbreviation: r.v.'s) such that

2 2
(1.1) Okt = E[“xnk“ ] <=
and
(1.2) E[(Xnk, xnj)] =0 (k#$js k,j=1,2,...,n;3 n=1,2,...).

Details on basic properties and measurability considerations for Hilbert
and Banach spaces are available in the literative cited in the references.

We will consider the means

(1.3) L * 5 EX (n=1,2,...)

1) This research was completed while the first named author was a
visiting professor at the University of Wisconsin, Madison, in the academic
year 1985-86. Also, this research was supported in part by the Air Force
Office of Scientific Research under Contract No. F 49620 85 C 0144 while the ;
second named author was at the Center for Stochastic Processes, University
of North Carolina, Chapel Hill, N.C.




) where a is a fixed positive number. Following Hsu and Robbins (1947) we

say that the sequence (cn} converges to zero completely, in sign 1hncn-()
n-oo

completely, if for every € > 0,

- -]
= PCHZ N >€e] < o,
n=1 n

By virtue of the Borel-Cantelli lemma, complete convergence implies
RN almost sure (in abbreviation: a.s.) convergence. The converse is not true

in general, except the case when the Cn are independent.

First we present a simple sufficient condition to ensure complete

AN convergence.

o Theorem 1. Let {X“k} be a rowwise orthogonal array in a separable 1

4l Hilbert space H. If

> 1 n 2
(1.4) T —=— = 0 <w
"y n=1 nZa k=1 nk

Wl for some a > 0, then

i (1.5) lim Cn = 0 completely.

tegd n-o

A Proof. By (1.1) and (1.2),

2 1 n n
LA (1.6) ECIgi1°]) =—E[L(=ZX.,, =X .)]
":’i n nZa k=1 nk j'l nj

1 n n
. _ = E[(Xnk, xnj)]

s
o n2® kel j=l

:::':: - _1- n 02
nZu. k=1 nk’
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= Hence, by (1.4),

> 2 - 1 " 2

Z ECig1t"] = = e = o0 K <
) n=1 n n=l n<* k=1 "
‘)‘“‘"‘t
v,
o
e This implies (1.5) v - “e Chebyshev inequality.
. A simple conse- - .e is the following.
PR
AN
:ﬁ‘ Corollary 1. Let {Xnk} be a_rowwise orthogonal array in a separable
A
EL Hilbert space H such that
';:i: (1.7) onkickk (n = k+1, k42, ...; k =1,2,...).
e
1e
.,‘I" ‘m g
|¢:| (1.8) > Zklfl < o
o k=1 k¢
"

for some a > 3, then we have (1.5).

;1; . Proof. In fact, (1.7) and (1.8) imply (1.4) in case a > } as follows
52
G
[7
A = = zazk_z; T ol
J n=l n“® k=1 % 7 pa] ¢ k=]
s,
3‘: =2 02 1 - °12<k
A, = Z %k = 35 "0 = 5
2 k=1 n=k ¢ k=1 k%
ol
:f% Remark 1. The weaker condition
et )
ot 0
Jn: (1.9) 5 —kk

) 2a

k=l

.‘.n.g
o
W implies only the complete convergence of the lacunary subsequence
L]
e {CZp: p=20,1,...}. Indeed, by (1.1), (1.2), (1.7) and (1.9),

¢

“"'r“"‘ ARSI G N ., ) ASHDASIHONCAN .'i‘s‘t,a“!';’i IR P I PLALIILE M ,ua”i AREEON et .:0"_3,‘%1“‘ KA




[ o 2P
2 1 2
T ECIC 1] = X =— T o
p=0 2P p=0 22GP k=1 2p,k
® zp %
1 2 2 1
< = T o, = X o T ==
w 0
=0(1) = —lzdi < =,
k=l K%

Hence, the Chebyshev inequality yields the complete convergence of {( p}.
2
Now the surprising fact is that Theorem 1 is the best possible
even
(i) for real valued (H = R) r.v.'s; and even

(ii) 1if we require orthogonality not only within each row but between

any two rows in the array {xnk}'

Theorem 2. Let {o,c} be an array of nonnegative numbers such that

o n
(1.10) Z = X g, m=w
=] =1

for some a > 0. Then there exists an array {xnk} of real valued r.v.'s

such that
(1.11) E[Xnk] =0,

2

2
(1.12) ECX, ] = o,

(1.13) E[Xnkxmj] = 0 (n$m or k $j;

k=1,2,...,n; j=1,2,...,m; n,m=1,2,...),




and

(1.14) lim sup | | = = pointwise.
n-o n
Proof. In the counterexample we will construct, the underlying
probability space is the unit square I2 = [0,1) x [0,1) with the Borel
measurable subsets and Lebesgue measure.

By (1.10), there exists a sequence {sn} of positive numbers tending

to zero such that

2
“n n 2
(1.15) c:=— X o0 ,<1 (n=1,2,...)
n 20 ;2 nj
n J
and
(1.16) Z c =,
n=] 0
We define
2
n-1 En k 2 i
dnk: 'm}-zl cm+n7; jE:l onj (k = 1,2,...,n3 n=1,2,...)
0
where we mean X =0 in case n=1. Denote by [¢] the greatest integer
m=1

part. Define the function fnk(ul) by

a

(1.17) £ (w): =21 (u), w, € [0, 1)
nk 1 en Jnk 1 1

where IJnk means the indicator of the set J ,  and where J ., = [dn,k-l -

[dn.k-ll’ d“.k - [dn.k]) when [dn,k-ll = [dn.k] and Jnk = [0, dnk-[dnk])u

(d

k-1 - (4, k- ]01) when [d o ;] t (a ). By (1.15) and (1.17),




1
2 5 . 2 _ 2
(1.18)  EC£3] L £2 (w) = o2, .

1
B (1.19)  ECf, £..] =L (o) Eoslopddoy =0 (k § 5).

X We will apply the Rademacher functions {rn (mz): n=1,2,...}

el defined by

L

M
~

]
[=N
A d
[on]

N rn(wz): (wz),' w, € (0,1).

=1 [(k-1)/2", k/2™)

0N Obviously, {rn} is a sequence of independent, identically distributed

O r.v.'s with

(1.20) E[rn]

0 and E[ri] =1 (n=1,2,...).

A' The role of the Rademacher functions in the theory of Banach spaces is
A

well-known (see, e.g., Schwartz (1981)).

. k Finally, we set

) Xnk(wl,wz): = fnk(wl)rn(wz) (k=1,2,...,n: n=1,2,...).

&N By construction, {fnk} and {rn} are independent of each other. Thus,

N by (1.18) - (1.20),
g ECX, ] =ECf, ] ECr ] =0,
ECXy ] ~ECf 1 E [l - i

o ECX Xy ] = BLE,f, ] E [r21 =0 (k# 1), |

nkfnj

E[Xnkxmj] = E[fnkfmj] E [tnrm] =0 (n#$m),

5 » B roramn PR T P LA ) Ty Ao g BT L~
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b which in turn provide relations (1.11) - (1.13).

By (1.15) and (1.16), each w € [0,1) is in Jnk for infinitely many

;; n, but for exactly one k when it is. Thus, for each (wl, wz) € I2

n
vy |5 | — Ei Xk (wl, mz)l

R

l; | %— rn(w2)| = %— infinitely often,
n

=]
=]

‘o whence (1.14) follows.

L _ §2. Extensions

kA A) We can consider the following generalized array of r.v.'s

:
) s e sesssesssssssess e
i

. where (pn: n=1,2,...) is a not necessarily increasing sequence of

X positive integers. In case P, = n for all n, we get an ordinary (triangular)
e array.

o B) We can substitute any sequence (A(n): n = 1,2,...) of positive

» numbers for n* in definition (1.3).

B R R R A S DA




8

‘:f C) We can require only quasi-orthogonality (see, e.g. Moricz (1977))
4

': instead of orthogonality. More exactly, we assume the fulfillment of (1.1),
K but instead of (1.2) we only need the existence of a generalized array

1,

¢

\':': {pnk: k = 1,2....,pn; n=1,2,...} of nonnegative numbers such that

N

v P,

’ (2.1) Z p,<C (n=1,2,...)

R k=1 Pk~

]

9]

;.0: where the constant C does not depend on n, and

4.4‘

l.g

0 (2.2) IECR s X031 <00 41 Ok %nj

t|"

i

RS
‘! (k,j=1,2,....pn;n-1.2,...).

g

) , .
.5 In the particular case when C 1 and L 0 otherwise, we get ordinary
) orthogonality.
‘;.. It is known (see again Moricz (1977)) that (2.1) and (2.2) imply

B

E',: that

0 Pn 2 Py 2

o ECYHE X 7] < (1+20) = o (n=1,2,...).

J k=2 T k=1 0

5

z‘.:“ Now the fulfillment of this moment inequality is crucial in the proof

'Y)

00

ij:' of Theorem 1.
e To sum up, the following theorem can be proved along the same lines
o

' as Theorem 1.
:f,::

:‘,’t Theorem 1A. Let {Xnk: k = 1,2,....pn; n=1,2,...} be a generalized
o array in a separable Hilbert space H satisfying conditions (1.1), (2.1)
;, and (2.2), and let (A(n): n = 1,2,...) be a sequence of positive numbers.
B8
Y If

RO ‘flv"l—‘rhr‘:.‘9,"hlt’.Aahé".v“;"‘g'i&:&?'i‘:'i‘:s‘:‘-":.,‘*,.3‘\“'"'.,‘4‘ M "‘.‘t‘_‘f!“«)‘k.&i.r‘"»“":'L“ “‘b.i"" . B é&“';,“" .'u,,i}e.kl?:, ?"f"": "‘i o
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= 1 Pn 2
(2.3) = 3 g K < o,
n=l A°(n) k=1 "
then
1 Pn
(2.4) lim — = X, =0 completely.
n-w X(ﬂ) k=1 nk completely

Even in this very general setting, condition (2.3) is the best
possible one to ensure (2.4). The way we proved Theorem 2 makes it possible

to prove the following more general theorem.

Theorem 2A. Let {onk: k = 1.2,....pn; n=1,2,...}) be a generalized

array of nonnegative numbers such that

® 1 Pn 5
b > o K = o,
n=l %(n) k=1 I

Then there exists a generalized arrav {Xnk} of real valued r.v.'s such that

conditions (1.11) and (2.12) are satisfied,

ELX ] =0 (n ¥ mor k # j;

nk mj

= 2 . i = 9 . = 9
k 1,-,...,pn, j 1.-,...,pm. n,m 1,2,...0,

, 1 . S
1124:up ‘A(n) kfi Xnk! pointwise.

§3. Banach Space Valued Random Variables

Many authors have contributed to the development of the theory of

Banach space valued r.v.'s. However, we will only need reference to the

ll\!t't{l|"'| h,o."o‘
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type p spaces of Hoffmann-Jérgensen and Pisier (1976), and the orthogonality
moment inequalities of Howell and Taylor (1981). Additional details on
basic properties and measurability considerations are available in the
literature cited there.

Orthogonality in the general Banach space situation becomes much
more problematic as the following example illustrates.

Example 1. Let 1 < q < = and 9 denote the set of sequences

(xk: k = 1,2,...) of real numbers such that

H(x )i = (kilxkﬁ)l/q < o,

It is well-known that 23 with the usual vector operation and the norm Il |

defined above is a separable Banach space. Setting

Xnk: = (0,...,0,rk,0,...) (k =1,2,...,n; n=1,2,...)

where the {rk} are the Rademacher functions, we get an array {xnk} con-~
sisting of rowwise independent, zero mean r.v.'s. So, they should be
rowwwise orthogonal with respect to any reasonable definition of ortho-

gonality. However, in trying to develop (1.6), we observe that
n n
ECH = X 127 = ECCE |r, |97 = n?/d
k=1 k=1

while

n 2
lc>=:.1 ECIX 073 =n.

Thus, for 1 < q < 2 the inequality

2/q n

2 n n 1

S i TR TR T B
n n n

ECI- £ x4 127
n2a k-l nk

. ™ AT i 4 R N AR AT A A N A OGEN SOOI N
RN R JD."" B _;‘_‘&Jig,,l‘fg‘,h_,.,h,‘.'_;‘.‘v’)":b,gfo..:ie. ) “’i'o“,“i’,’i',‘t".ai'wk"xf"a ,!}gt‘“. St 't" A‘v.,,a',_)s"_,‘a“ﬂ. eod {_o'i‘,i“,_»‘ L
N CoAT - B s o AR IO S AP L A SO T T Pt B

1
5 4

oy




#

P
o .t

11

e d

E goes in the wrong direction, and thus we are unable to duplicate the

| results of Section 1.

,‘;-Q:Q Hoffmann-Jérgensen and Pisier (1976) addressed this problem by
'i'gi
3 ;? - defining a separable Banach space B to be of type p, 1<p < 2, if for
?
U !
f:'f: every sequence {Xk: k=1,2,...} of independent, zero mean r.v.'s in
3 .
tate :
0' %: B with
B
Rl (3.1) ECIX "] < =,
W and for every n > 1, we have
l'::‘ -
WL
‘1:::3
'U*’
ot n n
LN (3.2) ECe = x1P] <c = ECix 1P
Sy k=1 xk k=1 xk
S '
.
A where C is a constant not depending on n and {Xk}.
Et : .
R Clearly, every separable Banach space is of type 1 and every separable
Q‘Q
'_ Hilbert space is of type 2 even with equality holding in (3.2) for C = 1.
(
:l:' Moreover, the P spaces are at most of type min (2,p), 1 < p < =,
e Howell and Taylor (1981) used James type orthogonality in defining
e
gt
:. a sequence {Xk} of r.v.'s in a separable Banach space B to be orthogonal
RO
‘3', in LP(B), 1 < p < =, if (3.1) is satisfied for all k and
n P Erre X P
ad . <
;z::!i (3.3) E[“k§1 (k) ng)" 2 [ukfl a1ce) Braot d
Eﬁ' 1
Y
f‘,‘:‘?
i for all sequences {ak} of real numbers, for all permutations w of the
w"‘.
::g < positive integers {1,2,...,mtn}, and for all n and m. |
::::: It is clear that orthogonal r.v.'s in a separable Hilbert space !
0
B satisfy (3.1) and (3.3) with p = 2. It is not hard to see that the \
g
;v:'i:b
‘;‘I‘

RO AN YOO AT, M) DA NI & v 7, IPRIEVETR M ) Y PRI NI (AN TN :
‘*‘-,»”“;‘, A I X W RIROIR AN AR R R R N A R K R N N AL
7y ) . N , . . . .
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B

;éb r.v.'s defined in £ in Example 1 satisfy (3.1) and (3.3) for any p,

R 1 < p<2. Note, q need not equal p.

Y Remark 2. Proposition 2.1 of Howell and Taylor (1981) states that a
;i separable Banach space B is of type p if and only if (3.2) is satisfied
Sﬁ% for all n and for all sequences {Xk} which are orthogonal in Lp(B).

gé& Inequality (3.2) was actually established for the weaker concept

%ﬁki of unconditional semi-basic (ucsb) r.v.'s but in this case the constant
A C depends on the particular ucsb sequence {Xk}. On the other hand, in the
%s; case of orthogonal r.v.'s the constant C depends only on the space B.

To illustrate the generality of the concept of orthogonality in

Banach spaces we present the following

.ﬁr
f}?; Example 2, Let 1 < p < 2 and let Y be a Borel measurable, real valued
ol =
] .!l
z?% function defined on [0,1) such that
e
1
S ECIYIPT = | 1Y) |P du, < =
9.:,0’ 1 1
C’ ’l
¥t
Q""
)
?“:':’; but
e"'
' 2 1 2
e ECY?) -_L () dday = .
¥y
Y
'y
{5:3 2
AW Define for (w;, w,) € [0,1) x [0,1) = I
KA,
R"“
$b£ Xn(wl, mz): = Y(wl) r, (wz) (n=1,2,...)
o
o
¥y
y
i vhere the {r } are the Rademacher functions.
bﬁ% Then the r.v.'s {Xn} are not orthogonal in the classical sense since
Vi
kh@‘ atxnxm] is not defined. Indeed,
2 2
iy ECIXX (] =ELY lrnrml ] =E[LY"] = o,
e
v ,l{",

2R3 ; 3 Y : 5 ] PR\ ] WA XA (AR BRMYOD
RGNS AN n‘f*“t" \ .‘.y,:.. K) .QL“,‘:‘G’ IO *,1,}‘0_3.1&{@‘?4- '.r{'vj‘v,“&_.g}f‘vvﬁ 3 G_,l‘g!‘tf,u? W) ‘g\fzh’;"‘ﬂ}.&‘_\' 0,'.-"?‘“ #

LRt /)
i



13

;2{ On the other hand, the r.v.'s {Xn} are James type orthogonal in Lp(IZ).
¥ This is a consequence of the fact that the r.v.'s {rn} are independent and
%: have zero mean, and therefore

i -

N P

-

Y

e - P

: - ECIYIPT B D0 F ag) £t

| P nim P

SECIYITT E OO Z apy Tyt 3

0

0

Bl

: =ECZ g X0l 3l

L

i -

.g Now if {Xnk: k=1,2,...,nj n=1,2,...} is an array of rowwise
¥

:ﬂ orthogonal (in LP(B)) r.v.'s in a Banach space B of type p, then it
e follows from (3.2) that

“J", o

‘o

:’5 NP C

o = E[u— =X 1P < s < >::E[nx 73

N2 = pa

; n=1 n k=1 n=1 n k=1

n

it

§$ and the following form of Theorem 1 is obtained.

A
'5“

e Theorem 1B. Let {Xnk} be an array of rowwise orthogonal (in LP(B))
Q; r.v.'s in a Banach space B of type p for some 1 < p < 2. If

",

Y

::: % 1 n

w . (3.4) — = ECIX_ IP]<=

: n=1 P* K=} nk
u’;:‘
f?: - for some a > 0, then we have (1.5).

A Remark 3. Since the real line R is of type p for each 1 < p < 2,

' Theorem 1B extends both the concept of orthogonality for real valued r.v.'s

. " - SPAAR . . xa
Ve NS t‘ te 'n"ﬁ‘ “a‘ ¥ ‘t‘»‘";’X»‘i‘;"c','n".'\‘nfi':‘t';'ﬁl‘j?whlnr."u‘f!k
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and the range of applicable moment conditions which yield (1.5).
Sufficient condition (3.4) is also best possible even for real valued

r.v.'s as the next theorem shows.

Theorem 2B. Let {Tnk} be an array of nonnegative real numbers such

that

for some 1 < p < 2 and some a > 0. Then there exists an_array {Xnk} of

real valued r.v.'s such that conditions. (1.11) and
| P
EC Xl = o

are satisfied, they are rowwise orthogonal in LP(IZ) and we have (1.14).

For the proof of Theorem 2B, replace (1.15) by

eP
n n p 1 (n 1,2 )
c: == = T, < = sl
n nP®  j=1 =
and follow the steps in the proof of Theorem 2 with dnkz = 232;{ ¢y

p
tn ;é P . : . tPrc2 .
+ — 7 .. The rowwise orthogonality in L*(I”) follows since

oP* 3=l nj

X

Jnl' eeesy J__ are disjoint subsets. It also follows that an, eees X0

nn

are orthogonal in the usual sense. Banach space versions of Corollary 1

and Theorems 1A and 1B are also available with similar conditions.
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